This Service Manual has been prepared by TRW Commercial Steering Systems for reference and use by mechanics who have been trained to repair and service steering components and systems on heavy commercial vehicles. TRW Commercial Steering Systems has exercised reasonable care and diligence to present accurate, clear and complete information and instructions regarding TRW Commercial Steering linkage components. Since this is a general service manual, the photographs and illustrations may not look exactly like the components being serviced. The procedures, therefore, must be carefully read and understood before servicing.

If inspection or testing reveals evidence of abnormal wear or damage to TRW linkage components or if you encounter circumstances not covered in the manual, STOP - CONSULT THE VEHICLE MANUFACTURER'S SERVICE MANUAL AND WARRANTY. DO NOT TRY TO REPAIR OR SERVICE ANY LINKAGE COMPONENT WHICH HAS BEEN DAMAGED OR INCLUDES ANY PART THAT SHOWS EXCESSIVE WEAR UNLESS THE DAMAGED AND WORN PARTS ARE REPLACED WITH ORIGINAL TRW REPLACEMENT AND SERVICE PARTS AND THE UNIT IS RESTORED TO TRW'S SPECIFICATIONS FOR THAT SPECIFIC COMPONENT.

It is the responsibility of the mechanic performing the maintenance, repairs or service on a particular TRW linkage component to (a) inspect components for abnormal wear and damage, (b) choose a repair procedure which will not endanger his/her safety, the safety of others, the vehicle, or the safe operation of the vehicle, and (c) fully inspect and test the linkage components and the vehicle steering system to ensure that the repair or service of the component has been properly performed and that the component and system will function properly.

TRW Commercial Steering Systems linkage components are covered by several United States and foreign patents, either issued or pending.

© TRW Inc., 2002
Table of Contents

Section 1 General Information
- Introduction ... 4
- General Design & Operation ... 5
- Available Seals .. 6

Section 2 On-Vehicle Inspection
- Visual Inspection ... 8
- Tie Rod End Lash .. 10
- Loose Connections and Adjustment Areas 11

Section 3 On-Vehicle Adjustments
- Draglink Adjustment and Centering
 - One End Adjustable ... 14
 - Two End Adjustable ... 17
- Tie Rod End Adjustment and Centering
 - One End Adjustable, Drop Center ... 19
 - One End Adjustable, Threaded Sleeve 21
 - Two End Adjustable ... 23
- Pitman Arm Timing ... 25

Section 4 Replacement
- Seal
 - Boot .. 28
 - Sliding .. 30
 - Anti-tilt .. 32
- Tie Rod End .. 34
- Grease Zerk Fitting ... 36
- Tie Rod Assembly ... 37
- Draglink Assembly ... 39
- Pitman Arm .. 41

Section 5 Maintenance
- Recommended Lubrication Guidelines .. 44

⚠️ **CAUTION**

It is imperative that the instructions in this booklet be followed to the letter. Failure to observe the procedures may result in a loss of steering.
Section 1 General Information

Introduction ... 4
General Design & Operation ... 5
Available Seals.. 6
This TRW Linkage Service Manual was written as a guide to help you install, maintain, inspect and service TRW linkage components.

Material in this manual is organized so you can work on TRW linkage components and get results without wasting time or being confused. To get these results, you should review the contents of this manual before you begin work on any TRW linkage component.

The three-column format used in this service manual will help make it easy for you to service steering linkages. Column 1 illustrates the procedure with photographs, column 2 gives a brief key as well as tools (if required) to be used for each procedure, and column 3 explains in detail the procedure you should follow. Pay special attention to the notes, cautions and warnings.

As you gain experience in servicing TRW linkage components, you may find that some information in this service manual could be clearer and more complete. If so, let us know about it. Don’t try to second-guess the service manual; if you do not understand a procedure, or are stuck, contact a TRW Technical Service Representative at 1-800-TRW-0899.
General Operation

Tie rod ends, as used in automotive steering linkage systems, are essentially pivot joints that provide universal motion. They must be rugged enough to withstand severe under-vehicle environments, while at the same time be refined to provide precise movement with minimal lash. Wheel turn and jounce envelopes often require steering linkage capable of high angle oscillations. Certain applications demand restricted movement tie rod ends that offer little or no oscillation.

General Design

L.E.M. (Low End Movement) tie rod ends use proven all-steel dual bearing construction and an integral pre-load spring that limits ball stud end movement and continuously compensates for ball and spherical bearing surface wear. Applications include both medium and heavy duty trucks, as well as off highway vehicles.

The L.E.M. tie rod end has a half ball stud and one bearing. On the outside you can use the flat cap and vertical closure to identify the design.

Dual seat tie rod ends are used on both medium and heavy duty trucks, as well as off highway vehicles.

This tie rod features a full ball stud and two bearings (one plastic, one steel). On the outside you can use the domed cap and rolled-over closure to identify the design. End movement is controlled with a pre-loaded spring as in the L.E.M. design, but due to the “fixed cap”, axial movement is significantly greater under load than the L.E.M. tie rod end.

Each 8000 series tie rod end features a hardened steel spherical ball stud captured between a hardened steel upper bearing and a spring pre-loaded thermoplastic lower bearing. Ball stud radial and axial movement is extremely limited by constant compression of the dual bearings around the ball. 8000 Series tie rod ends are used on medium and heavy duty trucks, as well as off highway vehicles. This tie rod combines the full ball, dual seat design with the low end movement feature of the L.E.M. design.

Designer series tie rod ends are used on such applications as snowmobiles, golf carts, lawn and garden tractors and agriculture implements as well as clutch and throttle linkage systems on medium and heavy trucks.
Available Seal Types

Sliding Seal

The most common seal for vertical ball sockets is the sliding seal. When rocking motion of the ball stud occurs the seal slides over the socket body.

Boot Seal

A boot seal securely attaches around the circumference of the socket body. Rocking motion of the ball stud is accommodated by flexing of the convoluted part of the seal. A metal reinforcing ring molded into the seal aperture snaps over the socket body, holding it in position as the stud oscillates. This seal is well suited to permanently lubricated ball socket assemblies, extended lube assemblies and severe service environments.

Anti-Tilt Seal

This seal configuration consists of a molded polymer element, and may include a steel side washer. The rigid seal assembly presses down over the ball stud and seats firmly over the socket body shoulder. Angular movement of the ball stud is restricted, while stud rotation is accommodated. Anti-tilt seals are particularly useful in applications where long drag links or shift rods must maintain a defined travel path.
Section 2 On-Vehicle Inspection

Visual Inspection ... 8
Tie Rod End Lash ... 10
Loose Connections and Adjustment Areas 11
Visual Inspection
(Draglinks, Tie Rods, Tie Rod Ends, Pitman Arm, Seals)

Cracks, breaks or bends
1. Visually inspect linkage components for broken clamps and gouges on tubes (from rubbing parts). Check for a bent steering arm.

Incorrect Components
2. Check manufacturer’s specifications to ensure the correct pitman arm and steering arm are installed.

Misadjustments
3. If you can see the end of the socket threads through the slot in the tube the drag link or tie rod must be adjusted or replaced. It’s either the wrong size, or the misadjustment was used to compensate for another problem on the vehicle. (e.g. If the toe in was adjusted to compensate for bent tie rod arms.)

Relocated steering gear (with the use of spacers, etc.)

Grease Zerks
4. Missing or damaged grease zerks must be replaced.
5. Any form of tear or improper sealing requires seal replacement.

6. Check for wear on the socket throat, and excessive lash in the socket assembly.

7. Check socket connections for missing cotter pins.
Tie Rod End Lash

What creates movement in tie rod ends?

In a TRW tie rod end, the compressive force of the spring creates resistive torque by applying a constant load on the bearing and stud.

As wear occurs on the components, the spring creates less resistive torque. With less torque, you no longer have the precise joint needed for optimum steering, but you do still have a safe linkage. When all compression is lost, it's time to replace the linkage.

This wear can be caused by impact, lack of lubrication and normal wear.

Inspection Station Criteria

Follow the procedures listed below for inspecting TRW tie rod ends. Measure any movement, detected by hand, with a scale for in and out motion on the ball stud axis.

If movement is 1/8" (3 mm) or more, the vehicle should be taken out of service, and the tie rod end replaced immediately.

If movement is less than 1/8" (3 mm) replacing the tie rod end is strictly a maintenance issue.

1. With vehicle engine on, lightly rock the steering wheel while checking for looseness in any threaded joint, or any movement of the stud nut. Any looseness requires repair.

2. With the engine off and wheels straight ahead, push and pull the socket in and out by hand in the direction of the ball stud axis. If no movement is detected, the socket is safe. Any movement detected by hand requires replacement of the socket.

WARNING

Do not use a wrench or other object to apply leverage when inspecting sockets. Applying leverage can give skewed results, and damage components. Component damage may ultimately result in loss of steering control.
1. Make sure nuts are tightened at:
 - drag link to pitman arm connection
 - drag link to steering arm connection
 - tie rod to tie rod arm connections
 - clamps at drag link and tie rod adjustable areas
Section 3 On-Vehicle Adjustments

Draglink Adjustment and Centering
 One End Adjustable .. 14
 Two End Adjustable ... 17

Tie Rod End Adjustment and Centering
 One End Adjustable, Drop Center 19
 One End Adjustable, Threaded Sleeve 21
 Two End Adjustable ... 23

Pitman Arm Timing .. 25
Draglink Adjustment and Centering: One End Adjustable

1. Position the road wheels straight ahead.

2. Disconnect the drag link at the pitman arm using the appropriate tool.

3. Make sure the steering gear is on center by aligning the timing marks (housing to output shaft.)

4. Loosen the clamp on the drag link.
6. Torque pitman arm and nut to vehicle manufacturer's specifications, and replace the cotter pin.

5. Adjust drag link length to fit the holes in the pitman arm and axle arm.

7. Grasp the long side of the drag link with both hands. Rotate the drag link away from you as far as it will go, then toward you as far as it will go. Center the drag link between these two points.

8. Hold the long side in place. Grasp the short end of the drag link (socket only) and rotate it as far toward you and away from you as it will go. Center the short end between these two points.

9. With both ends centered, tighten the clamp, and torque to vehicle manufacturer's specifications.

WARNING

If the clamp is tack-welded, do not remove the tack weld. If the tack weld is removed, clamping force will not be enough to keep the socket threads stationary. Loss of steering control will result.

NOTE

If the clamp is not tack welded, and is a free-to-rotate design, it can be tightened in any position properly.
10. Lubricate sockets through a grease zerk (unless they are "greased for life" sockets) until you can see clean grease purging out of the seal.

NOTE

This purge is necessary to ensure contaminants are removed from socket assemblies.
Draglink Adjustment and Centering: Two End Adjustable

1. Position the road wheels straight ahead

2. Loosen the clamps on both ends of the drag link.

3. Rotate the center tube of the drag link until the steering gear is on center (align housing timing mark with output shaft timing mark.)

4. Tighten the clamps and torque to manufacturer’s specifications.

CAUTION
Do not adjust the drag link to a position where you can see the end of the socket thread through the slot in the tube. If the socket thread is visible, corrosion may occur in the tube weakening the components.

WARNING
If the clamp is tack-welded, do not remove the tack weld. If the tack weld is removed, clamping force will not be enough to keep the socket threads stationary. Loss of steering control will result.

NOTE
If the clamp is not tack welded, and is a free-to-rotate design, it can be tightened in any position properly.
5. Lubricate sockets through a grease zerk (unless they are "greased for life" sockets) until you can see clean grease purging out of the seal.

NOTE
This purge is necessary to ensure contaminants are removed from socket assemblies.
Tie Rod Adjustment and Centering:
One End Adjustable, Drop-Center

1. Position the road wheels straight ahead.

2. Place a jack under the center of the front axle and jack up the front end of the vehicle so the steer axle tires are off the ground.

3. Loosen the clamp on the tie rod tube.

4. Disconnect the tie rod from the tie rod arm at the adjustable end.
5. Adjust the socket in one full turn increments. Reinstall the socket end, tighten (don't torque), and check toe in measurement after each full turn adjustment. Repeat as necessary until toe is correct.

6. Grasp the long side of the tie rod with both hands. Rotate the tie rod away from you as far as it will go, then toward you as far as it will go. Center the tie rod between these two points.

7. Hold the long side in place. Grasp the short end of the tie rod (socket only) and rotate it as far toward you and away from you as it will go. Center the short end between these two points.

8. With both ends centered, tighten the clamp, and torque to vehicle manufacturer's specifications.

9. Lubricate sockets through a grease zerk (unless they are "greased for life" sockets) until you can see clean grease purging out of the seal.

WARNING

If the clamp is tack-welded, do not remove the tack weld. If the tack weld is removed, clamping force will not be enough to keep the socket threads stationary. Loss of steering control will result.

NOTE

If the clamp is free-to-rotate, it can be tightened in any position properly.

NOTE

This purge is necessary to ensure contaminants are removed from socket assemblies.
Tie Rod Adjustment and Centering:
One End Adjustable with Threaded Sleeve

1. Position the road wheels straight ahead.

2. Raise the front end of the vehicle so the steer axle tires are off the ground.

3. Loosen the clamp on the tie rod tube.

4. Turn the hex adjuster until the toe is correct.

WARNING

Do not adjust the tie rod to a position where you can see the end of the socket thread through the slot in the tube. If the socket thread is visible, corrosion may occur in the tube weakening the components.
5. Grasp the long side of the tie rod with both hands. Rotate the tie rod away from you as far as it will go, then toward you as far as it will go. Center the tie rod between these two points.

6. Hold the long side in place. Grasp the short end of the tie rod (socket only) and rotate it as far toward you and away from you as it will go. Center the short end between these two points.

7. With both ends centered, tighten the clamp, and torque to vehicle manufacturer’s specifications.

WARNING

If the clamp is tack-welded, do not remove the tack weld. If the tack weld is removed, clamping force will not be enough to keep the socket threads stationary. Loss of steering control will result.

NOTE

If the clamp is not tack welded, and is a free-to-rotate design, it can be tightened in any position properly.

8. Lubricate sockets through a grease zerk (unless they are “greased for life” sockets) until you can see clean grease purging out of the seal.

NOTE

This purge is necessary to ensure contaminants are removed from socket assemblies.
Tie Rod Adjustment and Centering: Two End Adjustable

1. Position the road wheels straight ahead

2. Loosen the clamps on both ends of the tie rod.

3. Rotate the center tube of the tie rod until you achieve proper toe-in measurements on the front wheels. (Check vehicle manufacturer’s specs.)

 WARNING
 Do not adjust the tie rod to a position where you can see the end of the socket thread through the slot in the tube. If the socket thread is visible, corrosion may occur in the tube weakening the components.

4. Tighten the clamps and torque to manufacturer’s specifications.

 WARNING
 If the clamp is tack-welded, do not remove the tack weld. If the tack weld is removed, clamping force will not be enough to keep the socket threads stationary. Loss of steering control will result.

 NOTE
 If the clamp is not tack welded, and is a free-to-rotate design, it can be tightened in any position properly.
5. Lubricate sockets through a grease zerk (unless they are "greased for life" sockets) until you can see clean grease purging out of the seal.

NOTE

This purge is necessary to ensure contaminants are removed from socket assemblies.
Pitman Arm Timing

⚠️ WARNING ⚠️
Don’t remove the drag link connection after the pitman arm pinch bolt is removed. Doing so will deform the drag link and cause steering problems.

⚠️ WARNING ⚠️
When using a chisel to spread a pinch bolt-type pitman arm boss for assembly or removal from the shaft, maintain a firm grip on the chisel at all times. Failure to do this may result in the chisel flying loose which could cause an injury. Never leave the chisel wedged in the pitman arm boss. If you cannot remove the pitman arm from the shaft with a chisel and your hands, remove the chisel from the arm boss and use a puller only to remove the pitman arm.

⚠️ CAUTION ⚠️
Do not use a hammer on the pitman arm to remove it from the output shaft as internal damage to the steering gear could result. Be sure there is no spreading wedge left in the pitman arm boss before tightening the pitman arm clamp bolt after assembly on the output shaft.

1. Disconnect the drag link from the pitman arm using the appropriate tool.

2. Loosen and remove the pitman arm pinch bolt.

3. Remove the pitman arm using a pitman arm puller.

Disconnect drag link

Remove pinch bolt

Remove pitman arm
4. Check pitman arm internal splines for:
 - severe wear, corrosion and fretting
 - twisted splines
 - missing splines

WARNING
If twisted or missing splines are found, be sure to inspect all internal steering gear components carefully for signs of impact damage. Follow the procedure in the appropriate steering gear service manual.

5. Align the timing marks on the new pitman arm and steering gear output shaft. Make sure you use the correct timing mark; consult your manufacturer’s specifications if in doubt.

6. Spread open the split end of the arm just enough to allow the arm to slide onto the output shaft. Push the arm on with hand pressure.

7. Install the pinch bolt and torque to manufacturer’s specifications.

8. Reconnect the drag link. Torque the nut and replace the cotter pin.
Section 4 Replacement

Seal
- Boot ... 28
- Sliding ... 30
- Anti-tilt .. 32

Tie Rod End .. 34

Grease Zerk Fitting .. 36

Tie Rod Assembly .. 37

Draglink Assembly .. 39

Pitman Arm ... 41
Boot Seal Replacement

TOOL REQUIRED: A section of tubing with the inside diameter as close to the outside diameter of the boot seal (middle section) as possible.

The inside corner of the tube should be radiused (rounded) or chamfered (angled) so it will not cut the rubber during the press-on operation.

1. Disconnect drag link or tie rod from the axle arm or pitman arm.

2. Remove the entire drag link assembly, leaving the socket ends in position so the assembly can be easily reinstalled.

3. Press or tap on the flanged foot portion of the seal to remove it from the socket assembly. If you use a screwdriver to loosen the seal, be careful not to damage the sealing face of the socket forging.

4. Wipe off all grease and foreign material from around the ball stud and socket throat. Do not use any type of cleanser to remove the grease.
5. Using #2 NLGI extreme pressure, lithium-based, moly-filled, heavy duty grease, grease the socket throat and stud ball. Then fill the new boot seal 3/4 full with the same grease.

6. Position the socket assembly in a large vise, or on a press so that the ball stud is perpendicular to the socket stem.

7. Press on the new boot seal using the tool described below. The seal is in place when the flanged portion is seated on the machined section (sealing face) of the socket forging.

 CAUTION

 DO NOT over-press the seal; over-pressing could cause it to deform and seal improperly. DO NOT use a screwdriver, chisel, punch, etc. on the flanged foot of the seal for installation.

8. Reconnect the drag link or tie rod to its connection points, and tighten to vehicle manufacturer’s specifications. Replace the cotter pin.
2. Remove the old seal by sliding it off the ball stud.

3. Wipe off all grease and foreign material from around the ball stud and socket throat with a clean cloth. Don't use any type of chemical cleanser to remove the grease.

4. Slide the new seal over the ball stud until it seats on the shell.

Disconnection and Seal Removal

1. Disconnect drag link or tie rod from the axle arm or pitman arm.

Install new seal
5. Wipe off all foreign material from around the grease fitting. Apply #2 NLGI extreme pressure, lithium-based, moly-filled heavy duty grease through the fitting until it can be seen extruding past the seal.

6. Reinstall the assembly and torque connections to vehicle manufacturer’s specifications.
Anti-Tilt Seal Replacement

CAUTION

This seal kit should be used only for replacement of identical 8000 series 2-piece anti-tilt seals. Use of these components on any other configuration of socket and seal assembly could cause lash or lost motion while steering, and damage components.

1. Disconnect the drag link or tie rod from the arm.

2. Remove and discard the anti-tilt seal and wear plate(s).

3. Wipe off all grease and foreign material from around the ball stud and socket throat. Do not use any type of cleanser to remove the grease.

4. Assemble the parts from the kit as shown.
Reinstall linkage 5. Reconnect the drag link or tie rod to the arm and tighten to vehicle manufacturer’s specifications.

Grease socket 6. Grease the socket through the lube fitting using EP chassis lube NLGI Grade 3.
1. Loosen the clamp (or jam nut.)

2. Disconnect the socket from the arm.

3. Unscrew the socket from the tube. Use a pipe wrench if necessary, being careful not to deform the tube.

4. Screw the new socket into the tube.
5. Use adjustment and centering procedures for the type of assembly you're working on. You'll find the procedures in the On Vehicle Adjustments section of this manual.

6. Torque the clamp nut to vehicle manufacturer's specifications.
Grease Zerk Fitting Replacement

1. Clean the area around the damaged grease zerk thoroughly.

2. Unscrew the grease zerk and remove. If the grease zerk is broken off and cannot be unscrewed, use an E-Z Out.

3. Screw in a new zerk of the appropriate type, size and angle. Torque to manufacturer's specifications.

4. If the grease zerk is angled, make sure it is angled in the proper direction. Consult manufacturer's specifications if necessary.

NOTE
Before replacing the grease zerk, check for lash in the socket. Replace the entire socket if necessary.
1. Remove both ends of the tie rod from the tie rod arms using the appropriate tool.

2. Clean the tapered hole in the tie rod arm with a clean cloth.

3. Push each stud of the new tie rod into the tie rod arm. Check to make sure the threads on the stud extend down into the tapered hole. If the threads stop flush with or above the hole, the sockets are the wrong size. Do not install the wrong size sockets.

4. Install the new assembly, torque the ball stud nuts to vehicle manufacturer's specifications, and install cotter pins.
5. Center the tie rod using the appropriate procedure for the type of tie rod installed. You’ll find the procedures in the On Vehicle Adjustments section of this manual.

6. With vehicle engine on, lightly rock the steering wheel while checking for looseness and movement of the stud nut. Any looseness requires replacement of the tie rod arms.
Draglink Assembly Replacement

1. Remove both ends of the drag link from the steering arm and pitman arm using the appropriate tool.

2. Clean the tapered holes in the steering arm and pitman arm with a clean cloth.

3. Push each stud of the new drag link into the holes. Check to make sure the threads on the stud extend down into the tapered hole in both the steering arm and pitman arm.

 CAUTION

 If the threads stop flush with or above the hole, the sockets are the wrong size. Do not install the wrong size sockets.

4. Install the new assembly, torque the ball stud nuts to vehicle manufacturer’s specifications, and install cotter pins.
5. Center the drag link using the appropriate procedure for the type of drag link installed. You'll find the procedures in the On Vehicle Adjustments section of this manual.

6. With vehicle engine on, lightly rock the steering wheel while checking for looseness and movement of the stud nuts. Any looseness requires replacement of the steering arm or pitman arm.
Pitman Arm Replacement

WARNING
Don't remove the drag link connection after the pitman arm pinch bolt is removed. Doing so will deform the drag link and cause steering problems.

WARNING
When using a chisel to spread a pinch bolt-type pitman arm boss for assembly or removal from the shaft, maintain a firm grip on the chisel at all times. Failure to do this may result in the chisel flying loose which could cause an injury. Never leave the chisel wedged in the pitman arm boss. If you cannot remove the pitman arm from the shaft with a chisel and your hands, remove the chisel from the arm boss and use a puller only to remove the pitman arm.

CAUTION
Do not use a hammer on the pitman arm to remove it from the output shaft as internal damage to the steering gear could result. Be sure there is no spreading wedge left in the pitman arm boss before tightening the pitman arm clamp bolt after assembly on the output shaft.

1. Disconnect the drag link from the pitman arm using the appropriate tool.

2. Loosen and remove the pitman arm pinch bolt.

3. Remove the pitman arm using a pitman arm puller.
Inspect splines 4. Check pitman arm internal splines for:
 - severe wear, corrosion and fretting
 - twisted splines
 - missing splines

 WARNING
 If twisted or missing splines are found, be sure to inspect all internal steering gear components carefully for signs of impact damage. Follow the procedure in the appropriate steering gear service manual.

Align timing marks 5. Align the timing marks on the new pitman arm and steering gear output shaft. Make sure you use the correct timing mark; consult your manufacturer's specifications if in doubt.

Install pitman arm 6. Spread open the split end of the arm just enough to allow the arm to slide onto the output shaft. Push the arm on with hand pressure.

Torque pinch bolt 7. Install the pinch bolt and torque to manufacturer's specifications.

Connect drag link 8. Reconnect the drag link. Torque the nut and replace the cotter pin.
Section 5 Maintenance

Recommended Lubrication Guidelines 44
TRW Tie Rod and Drag Link Ends should be lubricated with #2 NLGI extreme pressure, lithium-based, moly-filled, heavy duty grease, at regular intervals recommended by the vehicle manufacturer. General guidelines for lubrication are listed below, but each owner has the ultimate responsibility for making sure the tie rod ends are lubricated appropriately for the vocation of the vehicle.

On-highway vehicles only

With Boot Seal
Severe Service - Lubricate tie rod end every oil change or 10,000 miles, whichever comes first.

Normal Service - Lubricate tie rod end every-other oil change or 20,000 miles, whichever comes first.

Flush with grease until you see clean grease.

With Sliding Seal
Normal Service - Lubricate tie rod end every oil change or more frequently when the vehicle is subjected to harsh environments.

Flush with grease until you see clean grease.

More specific procedures and intervals can be found in the vehicle manufacturers service manual. These procedures and intervals are TRW Commercial Steering Systems' recommended general guidelines for steering related preventive maintenance.